Part Number Hot Search : 
W78M032A EL6262C 5N60F A1011 SM102 EL6262C HER102SG 100PC
Product Description
Full Text Search
 

To Download AMMC-5024 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Agilent AMMC-5024 30 KHz - 40 GHz Traveling Wave Amplifier
Data Sheet
Features * Wide frequency range: 30 KHz - 40 GHz * High gain: 16 dB * Gain flatness: 0.75 dB * Return loss: Input: 13 dB, Output: 13 dB * Medium power: P-1dB = 22.5 dBm at 22 GHz * Low noise figure: 4.6 dB at 26 GHz Applications * Communication systems
Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: 2350 x 1050 m (92.5 x 41.3 mils) 10 m (0.4 mils) 100 10 m (4 0.4 mils) 80 x 80 m (2.95 x 0.4 mils)
* Microwave instrumentation * Optical systems * Broadband applications requiring flat gain and group delay with excellent input and output port matches over the 30 KHz and 40 GHz frequency range
Description Agilent's AMMC-5024 is a broadband PHEMT GaAs MMIC TWA designed for medium output power and high gain over the full 30 KHz to 40 GHz frequency range. The design employs a 9-stage, cascade-connected FET structure to ensure flat gain and power as well as uniform group delay. E-beam lithography is used to produce uniform gate lengths of 0.15 mm and MBE technology assures precise semiconductor layer control.
Absolute Maximum Ratings [1]
Symbol
Vdd Idd Vg1 Ig1 Vg2 Ig2 Pin Tch Tb Tstg Tmax
Parameters/Conditions
Positive Drain Voltage Total Drain Current First Gate Voltage First Gate Current Second Gate Voltage Second Gate Current CW Input Power Operating Channel Temperature Operating Backside Temperature Storage Temperature Max. Assembly Temp (60 sec max)
Units
V mA V mA V mA dBm C C C C
Min.
Max.
10 340
-9.5 -38 -3.5 -20
0 +1 +4
17 +150 -55 -65 +165 +300
Notes: 1. Absolute maximum ratings for continuous operation unless otherwise noted.
AMMC-5024 DC Specifications/Physical Properties[1]
Symbol
Idss Vp Vg2 Idsmin (Vg1) Idsmin (Vg2) ch-b
Parameters and Test Conditions
Saturated Drain Current (Vdd =7 V, Vg1 =0 V, Vg2 =open circuit) First Gate Pinch-off Voltage (Vdd =7 V, Idd =30 mA, Vg2 =open circuit) Second Gate Self-bias Voltage (Vdd =7 V, Idd = 200 mA, Vg2 =open circuit) First Gate Minimum Drain Current (Vdd = 7 V, Vg1 = -7 V, Vg2 =open circuit) Second Gate Minimum Drain Current (Vdd = 7 V, Vg1 = 0 V, Vg2 = -3.5 V) Thermal Resistance[2] (Backside temperature, Tb = 25C)
Units
mA V V mA mA C/W
Min.
250
Typ.
304 -8.2 2.75 47 105 52
Max.
350
68 128
RF Specifications for High Power Applications[3,4] (Vdd =7 V, Idd(Q)=200 mA, Zin = Zo =50
Symbol
|S21|2 |S21|2 RLin RLout |S12| P-1dB Psat OIP3 NF
2
Parameters and Test Conditions
Small-signal Gain Small-signal Gain Flatness Input Return Loss Output Return Loss Isolation Output Power @ 1 dB Gain Compression Saturated Output Power Output 3 Order Intercept Point, Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, f = 2 MHz Noise Figure (Vds = 3V, Ids = 140 mA) f = 26 GHz f = 40 GHz
rd
Units
dB dB dB dB dB f = 22 GHz f = 22 GHz dBm dBm dBm dB dB
Min.
14
Typ.
16 0.75
Max.
18 1.5
12 10 26 21 23 27
16.9 16.8 28 22.5 24.5 30 4.6 7.2 6.5 9
RF Specifications for High Gain and Low Power Applications[3,4] (Vdd =4 V, Idd(Q)=160 mA, Zin = Zo =50
Symbol
|S21|2 |S21| RLin RLout |S12| P-1dB Psat OIP3 NF
2 2
Parameters and Test Conditions
Small-signal Gain Small-signal Gain Flatness Minimum Input Return Loss Minimum Output Return Loss Isolation Output Power @ 1 dB Gain Compression Saturated Output Power Output 3 Order Intercept Point, Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, f = 2 MHz Noise Figure f = 26 GHz f = 40 GHz
rd
Units
dB dB dB dB dB f = 22 GHz f = 22 GHz dBm dBm dBm dB dB
Min.
Typ.
17.5 1.5 13 13 30 17.3 20.5 22.5 3.7 5.5
Max.
Notes: 1. Backside temperature Tb = 25C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (ch-b) = 61C/W at Tchannel (Tc) = 150C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25C calculated from measured data. 3. Data measured in wafer form, Tchuck = 25C 4. 100% on-wafer RF test is done at frequency = 2, 10, 20, 30 and 40 GHz, except as noted.
2
AMMC-5024 Typical Performance (Tchuck = 25C, Vdd = 7V, Idd = 200 mA, Vg2 = Open, Z0 = 50)
20 18 16 14
S21 (dB) S12 (dB)
0
0 -5
RETURN LOSS (dB)
S11(dB) S22(dB)
30 25
P-1, P-3 (dBm)
P-1 P-3
-20
-10 -15 -20 -25
20 15 10 5 0
12 10 8 6 4 2 0 0 10 20 30 40 -80 50
S21(dB) S12(dB)
-40
-60
-30
0
10
20
30
40
50
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 1. Gain and Reverse Isolation.
Figure 2. Return Loss (Input and Output).
Figure 3. Output Power (P-1 and P-3).
0.14 0.12
10
40
8 0.1
td (nS) NOISE FIGURE (dB)
30 6
OIP3 (dBm)
0.08 0.06 0.04
20
4
2 0.02 0 0 0 10 20 30 40 50
10
0
10
20
30
40
50
0
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 4. Group Delay.
Figure 5. Noise Figure.
Figure 6. Output IP3.
3
AMMC-5024 Typical Scattering Parameters
Freq. GHz
0.05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
[1]
(Tchuck = 25C, VDD = 7V, IDD = 200 mA, Z in = Z out = 50)
S21 Mag
6.703 6.588 6.514 6.434 6.321 6.214 6.117 6.058 6.051 6.081 6.119 6.099 5.997 5.876 5.826 5.855 5.954 6.070 6.174 6.216 6.211 6.182 6.206 6.253 6.326 6.399 6.410 6.351 6.215 6.078 6.003 6.068 6.158 6.173 6.034 5.800 5.640 5.576 5.539 5.393 5.113 4.776 4.439 4.123 3.769 3.447 3.184 2.978 2.774 2.514 2.214
dB
-26.524 -24.941 -21.885 -19.412 -17.725 -16.970 -16.940 -17.741 -19.505 -22.752 -25.795 -21.613 -17.435 -14.804 -13.213 -12.628 -12.989 -14.171 -16.678 -20.641 -23.782 -21.425 -19.193 -18.288 -19.046 -21.832 -27.570 -28.076 -20.068 -16.785 -15.212 -14.889 -16.789 -18.936 -19.985 -19.130 -18.210 -18.457 -22.391 -24.387 -22.649 -20.369 -20.473 -20.560 -18.778 -19.072 -18.104 -14.701 -11.446 -9.005 -6.637
S11 Mag
0.047 0.057 0.080 0.107 0.130 0.142 0.142 0.130 0.106 0.073 0.051 0.083 0.134 0.182 0.218 0.234 0.224 0.196 0.147 0.093 0.065 0.085 0.110 0.122 0.112 0.081 0.042 0.039 0.099 0.145 0.174 0.180 0.145 0.113 0.100 0.111 0.123 0.119 0.076 0.060 0.074 0.096 0.095 0.094 0.115 0.111 0.124 0.184 0.268 0.355 0.466
Phase
-174.370 -154.440 -146.320 -149.270 -157.970 -168.560 -179.420 170.600 163.170 163.190 -165.530 -134.230 -136.040 -147.840 -163.030 -179.470 163.010 147.400 135.040 130.070 154.470 177.240 173.670 156.910 138.050 114.120 67.164 -50.074 -96.000 -121.770 -145.820 -168.310 173.110 166.700 177.880 179.680 160.620 134.410 91.975 23.468 -37.468 -74.314 -84.567 -91.634 -92.252 -85.034 -73.258 -64.708 -65.771 -76.848 -89.734
dB
16.526 16.375 16.277 16.170 16.016 15.868 15.731 15.646 15.636 15.679 15.733 15.705 15.558 15.381 15.307 15.351 15.496 15.663 15.812 15.870 15.863 15.823 15.856 15.922 16.022 16.122 16.137 16.057 15.869 15.675 15.567 15.661 15.788 15.810 15.612 15.269 15.025 14.926 14.869 14.636 14.174 13.581 12.946 12.305 11.524 10.748 10.059 9.479 8.863 8.007 6.902
Phase
179.390 155.660 133.110 110.580 88.271 66.412 44.780 23.511 2.105 -19.628 -42.046 -64.823 -87.590 -109.420 -130.680 -152.100 -174.100 163.120 139.670 115.610 91.770 67.954 44.285 20.329 -4.276 -29.641 -55.651 -82.011 -108.060 -133.780 -158.990 175.180 147.730 118.780 89.206 60.446 32.215 3.374 -27.424 -59.455 -92.328 -124.820 -157.360 169.650 136.220 103.130 69.590 34.467 -3.117 -42.656 -83.972
dB
-66.134 -61.862 -55.350 -51.048 -48.620 -46.356 -44.560 -42.719 -41.197 -39.902 -38.851 -37.914 -37.130 -36.350 -35.589 -34.692 -33.794 -32.937 -32.208 -31.690 -31.208 -30.781 -30.231 -29.783 -29.336 -28.991 -28.757 -28.622 -28.763 -28.808 -28.853 -28.759 -28.591 -28.536 -28.676 -28.992 -29.214 -29.344 -29.287 -29.189 -29.513 -29.849 -30.351 -30.858 -31.563 -32.440 -33.098 -33.500 -33.995 -33.996 -34.691
S12 Mag
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.009 0.010 0.011 0.013 0.014 0.015 0.017 0.018 0.020 0.023 0.025 0.026 0.028 0.029 0.031 0.032 0.034 0.036 0.036 0.037 0.036 0.036 0.036 0.036 0.037 0.037 0.037 0.036 0.035 0.034 0.034 0.035 0.033 0.032 0.030 0.029 0.026 0.024 0.022 0.021 0.020 0.020 0.018
Phase
-56.514 -109.670 -132.750 -153.970 -174.570 165.210 144.510 123.530 102.140 80.129 58.121 36.356 15.803 -4.845 -25.521 -45.793 -67.515 -90.266 -113.940 -137.810 -161.750 174.640 151.020 126.440 100.950 75.101 47.960 20.890 -6.265 -33.072 -59.523 -86.846 -115.960 -146.370 -177.890 151.190 120.660 90.933 60.092 27.357 -6.508 -39.965 -73.488 -107.270 -142.290 -175.820 150.230 119.650 83.945 49.390 15.240
dB
-29.620 -29.934 -26.919 -25.153 -24.391 -24.068 -23.775 -22.940 -21.619 -20.245 -19.716 -20.130 -21.644 -22.284 -20.256 -18.092 -16.431 -15.737 -15.813 -16.780 -18.810 -21.397 -23.661 -21.101 -18.085 -15.617 -14.258 -13.705 -13.717 -14.430 -15.005 -15.146 -14.682 -13.588 -12.883 -12.719 -13.861 -15.387 -19.170 -30.763 -24.452 -17.619 -16.143 -16.259 -18.606 -24.603 -21.717 -15.939 -13.445 -12.285 -11.324
S22 Mag
0.033 0.032 0.045 0.055 0.060 0.063 0.065 0.071 0.083 0.097 0.103 0.099 0.083 0.077 0.097 0.125 0.151 0.163 0.162 0.145 0.115 0.085 0.066 0.088 0.125 0.166 0.194 0.206 0.206 0.190 0.178 0.175 0.184 0.209 0.227 0.231 0.203 0.170 0.110 0.029 0.060 0.132 0.156 0.154 0.117 0.059 0.082 0.160 0.213 0.243 0.272
Phase
7.766 12.796 18.718 10.362 0.922 -7.610 -12.684 -18.420 -28.987 -47.192 -73.520 -109.900 -157.830 137.330 76.041 29.951 -7.571 -40.792 -74.475 -106.600 -142.950 169.440 104.260 34.057 -13.560 -54.765 -92.329 -131.060 -171.110 145.610 97.895 46.328 -10.820 -62.908 -111.430 -155.460 164.720 122.630 84.484 20.516 -146.250 165.520 133.010 99.260 76.664 93.515 135.190 122.900 114.170 89.641 78.671
Note: 1. Data obtained from on-wafer measurements.
4
AMMC-5024 Typical Performance (Tchuck = 25C, Vdd = 4V, Idd = 160 mA, Vg2 = Open, Z0 = 50)
20 0 0 -5
RETURN LOSS (dB)
S11(dB) S22(dB)
30 25
P-1, P-3 (dBm)
P-1 P-3
15
S21 (dB)
-20
S12 (dB)
-10 -15 -20 -25
20 15 10 5 0
10
-40
5
S21(dB) S12(dB)
-60
0
0
20
40
-80 50
-30
0
10
20
30
40
50
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 7. Gain and Reverse Isolation.
Figure 8. Return Loss (Input and Output).
Figure 9. Output Power (P-1 and P-3).
0.14 0.12
10
30 25 20 15 10
8
NOISE FIGURE (dB)
0.1
td (nS)
0.08 0.06 0.04 0.02 0
6
4
2
OIP3 (dBm)
5 0
0
10
20
30
40
50
0
0
10
20
30
40
50
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 10. Group Delay.
Figure 11. Noise Figure.
Figure 12. Output IP3.
5
AMMC-5024 Typical Scattering Parameters[1] (Tchuck = 25C, VDD = 4V, IDD = 160 mA, Z in = Z out = 50)
Freq. GHz
0.05 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
dB
-26.046 -25.998 -24.392 -22.084 -20.032 -18.871 -18.430 -18.727 -19.934 -22.656 -27.478 -25.347 -19.749 -16.206 -14.011 -12.962 -12.935 -13.689 -15.570 -19.085 -25.363 -26.442 -20.900 -18.349 -17.560 -18.343 -20.831 -25.482 -21.019 -15.842 -13.096 -11.817 -12.588 -14.900 -21.159 -20.309 -14.744 -12.538 -13.339 -15.011 -16.105 -14.757 -15.383 -21.471 -18.182 -12.590 -13.269 -20.284 -14.029 -9.656 -5.683
S11 Mag
0.050 0.050 0.060 0.079 0.100 0.114 0.120 0.116 0.101 0.074 0.042 0.054 0.103 0.155 0.199 0.225 0.226 0.207 0.167 0.111 0.054 0.048 0.090 0.121 0.132 0.121 0.091 0.053 0.089 0.161 0.221 0.257 0.235 0.180 0.088 0.097 0.183 0.236 0.215 0.178 0.157 0.183 0.170 0.084 0.123 0.235 0.217 0.097 0.199 0.329 0.520
Phase
-175.110 -164.940 -151.920 -147.760 -152.230 -160.550 -170.290 179.750 170.600 164.210 -179.640 -126.840 -120.480 -131.310 -146.840 -164.520 176.980 159.730 143.690 128.620 133.080 -165.970 -156.420 -172.490 168.580 145.730 110.490 47.234 -43.397 -84.248 -115.690 -144.730 -171.610 163.390 161.170 -141.280 -158.220 170.230 132.480 78.005 6.891 -61.000 -108.170 -141.240 -72.748 -105.520 -153.320 126.900 -5.310 -41.069 -68.263
dB
16.908 16.786 16.727 16.657 16.538 16.419 16.305 16.225 16.227 16.287 16.384 16.410 16.336 16.209 16.158 16.210 16.352 16.530 16.717 16.846 16.926 16.965 17.054 17.170 17.320 17.534 17.708 17.813 17.786 17.674 17.547 17.670 17.969 18.362 18.588 18.465 18.201 18.066 18.167 18.276 18.189 17.917 17.784 17.922 17.442 15.750 13.940 12.983 11.793 7.696 4.495
S21 Mag
7.005 6.907 6.860 6.805 6.713 6.621 6.535 6.475 6.476 6.522 6.595 6.614 6.559 6.464 6.425 6.464 6.570 6.707 6.853 6.955 7.020 7.051 7.124 7.220 7.345 7.528 7.680 7.774 7.750 7.651 7.540 7.648 7.915 8.282 8.500 8.380 8.130 8.004 8.098 8.200 8.118 7.868 7.748 7.872 7.449 6.130 4.978 4.458 3.887 2.426 1.678
Phase
179.610 156.790 135.230 113.560 92.010 70.825 49.938 29.369 8.799 -12.033 -33.532 -55.435 -77.463 -98.816 -119.500 -140.230 -161.440 176.800 154.440 131.460 108.520 85.461 62.568 39.543 16.078 -8.082 -32.996 -58.575 -84.438 -110.030 -134.660 -159.020 175.550 148.060 118.310 88.090 59.059 30.963 1.607 -29.543 -62.709 -95.764 -128.890 -165.490 151.790 110.450 75.442 40.022 -5.741 -50.048 -69.558
dB
-59.336 -65.942 -59.134 -54.398 -52.371 -49.621 -47.520 -45.659 -43.865 -42.482 -41.201 -40.162 -39.239 -38.327 -37.323 -36.407 -35.276 -34.270 -33.419 -32.607 -31.889 -31.268 -30.682 -30.022 -29.439 -28.885 -28.374 -27.893 -27.722 -27.501 -27.408 -27.130 -26.768 -26.185 -25.723 -25.559 -25.633 -25.760 -25.749 -25.454 -25.424 -25.415 -25.467 -25.277 -25.857 -27.536 -29.470 -30.994 -33.295 -39.913 -44.196
S12 Mag
0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.008 0.009 0.010 0.011 0.012 0.014 0.015 0.017 0.019 0.021 0.023 0.025 0.027 0.029 0.032 0.034 0.036 0.038 0.040 0.041 0.042 0.043 0.044 0.046 0.049 0.052 0.053 0.052 0.052 0.052 0.053 0.054 0.054 0.053 0.054 0.051 0.042 0.034 0.028 0.022 0.010 0.006
Phase
-61.940 -108.900 -128.490 -158.090 -178.300 161.460 141.190 119.280 97.498 74.972 53.471 31.594 10.910 -9.819 -29.734 -50.251 -72.076 -94.562 -118.010 -141.710 -166.020 169.730 145.660 121.250 96.409 70.972 44.076 17.025 -10.669 -38.170 -65.246 -92.100 -119.520 -148.970 179.060 145.960 113.580 82.862 52.499 20.356 -13.439 -47.607 -83.226 -122.260 -166.580 150.440 112.520 73.538 27.040 -10.430 11.969
dB
-32.459 -34.057 -31.519 -30.113 -29.546 -28.527 -26.705 -24.546 -22.558 -21.031 -20.499 -20.801 -21.844 -22.131 -20.818 -19.513 -18.421 -18.158 -18.744 -20.205 -23.130 -27.569 -33.534 -26.084 -21.809 -18.685 -16.869 -15.693 -15.062 -15.047 -15.045 -14.911 -14.657 -13.556 -12.691 -12.218 -13.056 -14.378 -16.970 -21.811 -20.840 -16.035 -15.120 -16.069 -19.776 -14.233 -11.523 -10.251 -12.501 -17.076 -12.434
S22 Mag
0.024 0.020 0.027 0.031 0.033 0.037 0.046 0.059 0.074 0.089 0.094 0.091 0.081 0.078 0.091 0.106 0.120 0.124 0.116 0.098 0.070 0.042 0.021 0.050 0.081 0.116 0.143 0.164 0.177 0.177 0.177 0.180 0.185 0.210 0.232 0.245 0.222 0.191 0.142 0.081 0.091 0.158 0.175 0.157 0.103 0.194 0.265 0.307 0.237 0.140 0.239
Phase
16.703 5.690 17.159 12.590 10.367 9.842 8.417 -0.474 -17.521 -41.715 -72.840 -112.770 -161.860 138.490 82.104 36.945 -0.979 -34.038 -67.232 -96.759 -128.700 -173.310 98.102 10.942 -29.430 -66.154 -100.080 -136.500 -174.690 144.500 101.700 56.891 6.430 -42.887 -92.108 -138.540 -178.190 143.400 116.660 111.200 134.530 118.260 80.564 25.234 -75.636 -173.290 139.690 102.000 75.692 74.549 98.012
Note: 1. Data obtained from on-wafer measurements.
6
AMMC-5024 Typical Performance (Over Temperature and Voltage)
25 30 25
S21, S11, and S22 (dB)
20 10 0 -10 -20 -30 -40 0 10 20 30 40 50 FREQUENCY (GHz)
20
20
GAIN (dB)
15
P-1 (dBm)
S11/80C S22/-40C S21/25C S22/80C S22/-40C
S11/25C S21/80C S22/-40C S22/25C
15 10 5 0
7V/200mA 6V/187mA 5V/174mA 4V/160mA 3V/147mA
10
5
7V/200mA 6V/187mA 5V/174mA 4V/160mA 3V/147mA
0
0
10
20
30
40
50
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 13. Gain and Voltage.
Figure 14. P-1 and Voltage.
Figure 15. Gain and Return Loss with Temperature.
8
30 25 20
P-1 (dBm)
7 6 5
P-1 (dBm)
NF/-40C NF/25C NF/80C
4 3 2 1 0
NOISE FIGURE (dB)
6
7V/200 mA 6V/187 mA 5V/174 mA 4V/160 mA 3V/147 mA
15 10 5 0
P-1/80C P-1/25C P-1/-40C
4
2
0
10
20
30
40
50
0
10
20
30
40
50
0
0
10
20
30
40
50
FREQUENCY (GHz)
FREQUENCY (GHz)
FREQUENCY (GHz)
Figure 16. P-1 and Temperature, Vdd=7V, Idd=200 mA.
Figure 17. Noise Figure and Temperature at Vdd=4V, Idd=160 mA.
Figure 18. Noise Figure and Voltage.
7
Biasing and Operation AMMC-5024 is biased with a single positive drain supply (Vdd) a negative gate supply (Vg1) and has a positive control gate supply (Vg2). For best overall performance the recommended bias condition for the AMMC-5024 is Vdd =7V and Idd = 200 mA. To achieve this drain current level, Vg1 is typically between -2.5 to -3.5V. Typically, DC current flow for Vg1 is -10 mA. Open circuit is the default setting for Vg2 when not utilizing gain control. Using the simplest form of assembly (Figure 20), the device is capable of delivering flat gain over a 2 - 50 GHz range with a minimum of gain slope and ripple. However, this device is designed with DC coupled RF I/O ports, and operation may be extended to lower frequencies (<2 GHz) through the use of offchip low-frequency extension circuitry and proper external biasing components. With low frequency bias extension it may be used in a variety of timedomain applications (through 40 Gb/s). Figure 21 shows a typical assembly configuration. When bypass capacitors are connected to the AUX pads, the low frequency limit is extended down to the corner frequency determined by the bypass capacitor and the combination of the on-chip 50 ohm load and small de-queing resistor. At this frequency the small signal gain will increase in magnitude and stay at this elevated level down to the point where the Caux bypass capacitor acts as an open circuit, effectively rolling off the gain completely. The low frequency
limit can be approximated from the following equation:
fCaux = 1 2Caux(Ro + RDEQ)
where: Ro is the 50 gate or drain line termination resistor. RDEQ is the small series dequeing resistor and 10. Caux is the capacitance of the bypass capacitor connected to the AUX Drain and AUX Gate pad in farads. With the external bypass capacitors connected to the AUX gate and AUX drain pads, gain will show a slight increase between 1.0 and 1.5 GHz. This is due to a series combination of Caux and the on chip resistance but is exaggerated by the parasitic inductance (Lc) of the bypass capacitor and the inductance of the bond wire (Ld). Therefore the bond wire from the Aux pads to the bypass capacitors should be made as short as possible. Input and output RF ports are DC coupled; therefore, DC decoupling capacitors are required if there are DC paths. (Do not attempt to apply bias to these pads.) RF bond connections should be kept as short as possible to reduce RF lead inductance which will degrade performance above 20 GHz. An optional output power detector network is also provided. Detector sensitivity is optimized by biasing the diodes with typical drain voltage Vdd = 7 volts. Simply connecting Det-Bias to the Vdd supply is a convenient method of biasing this detector network. The
differential voltage between the Det-Ref and Det-Out pads can be correlated with the RF power emerging from the RF output port. A >0.5 F capacitor is required for the Det_Out pad to expand power detection performance below 100 MHz. Ground connections are made with plated through-holes to the backside of the device; therefore, ground wires are not needed. Assembly Techniques The chip should be attached directly to the ground plane using either a fluxless AuSn solder preform or electrically conductive epoxy[1]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh[2] or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 2 C.
8
The chip is 100 m thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken.
For more detailed information, see Agilent Application Note 54 "GaAs MMIC ESD, Die Attach and Bonding Guidelines." Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824
GND
DET_OUT
Nine Identical Drain Bias (Vdd) RF_Output Vdd AUX
DET_BIAS Second Gate First Gate Bias (Vg1) RF_Input
DET_REF
Figure 19. AMMC-5024 Schematic.
9
DET_Reference Vdd_AUX Vdd 180 DET_Bias 415 550 830 DET_Output 1260 GND 2260
1050 960
RF Output 733 Vg2
RF INPUT 235
510 90
0 90 Vg1 2080 2350
Figure 20. AMMC-5024 Bonding Pad Locations. (dimensions in micrometers)
Drain bias must be decoupled from RF to lowest operating frequency 100 pF Capacitor
4 nH Inductor for operation to 2 GHz bond wire
VDD IN VG1
OUT
Gate is decoupled from RF. (Bond wire length is not important)
Figure 21. AMMC-5024 Assembly Diagram.
www.agilent.com/semiconductors
For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright (c) 2003 Agilent Technologies, Inc. August 5, 2003 5988-9884EN


▲Up To Search▲   

 
Price & Availability of AMMC-5024

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X